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Abstract

The dynamic behaviour of equal-sized spherical gas bubbles rising in vertical line was studied
numerically at Reynolds number (Re ) 50±200. A force-law model was suggested for hydrodynamic
interactions within the bubble chain. Three forces acted on each bubble: buoyancy, viscous drag, and
inviscid inertia forces. Both local (nearest-neighbour approximation) and non-local (distant e�ects)
interactions between bubbles were considered. The viscous non-local interactions consisted in creation of
velocity disturbances by the passage of bubbles and resulted in progressive drag reduction down the
chain. Due to the balance between creation and decay of the disturbances, the distant interactions
a�ected only a certain number of the anterior bubbles until the limit chain drag was reached. This drag
then applied to all remaining bubbles independent of their positions and the distant e�ects were thus
eliminated. The inviscid non-local interactions consisting in inertial coupling between distant bubbles
were found weaker than the viscous non-local interactions and were, therefore, neglected. Two kinds of
bubble chain with di�erent boundary conditions were distinguished: the free-end chain and the ®xed-end
chain. The free-end chain tended to split into smaller bubble groups that subsequently interacted and
produced a highly fragmented long-time chain structure. The typical phenomena in bubble interactions
were the following: merger, separation, pairing-o�, re-pairing, and oscillation. The ®xed-end chain
allowed for uniform spacing, rose faster than an isolated bubble, and supported propagation of
concentration disturbances. Uniform spacing became unstable at low Re and bubbles displayed chaotic
behaviour. The results produced by the model were compared with data published in the literature. The
model was able to predict and explain the key phenomena observed in experiments. This correspondence
was obtained in the nearest-neighbour approximation (the distant e�ects may not be very strong in real
systems). Intensive non-local interactions a�ected the chain behaviour substantially. The analogy
between hydrodynamic and mechanical `masses-on-spring' systems was pointed out. 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The results on hydrodynamic interactions of particles arranged in a one-dimensional array
found in the literature are presented here. In many ways, these arrays display similar features
of behaviour regardless of the physical nature of the particles (bubbles, drops, and solids).

1.1. Two bubbles

Low Reynolds number behaviour of two particles has been studied thoroughly for a long time
(Happel and Brenner, 1965; Rushton and Davies, 1978). In absence of inertial e�ects, the
particles move with constant and equal velocities and are separated by a constant spacing. The
pair is always faster than an isolated particle, and the total pair drag decreases with decreasing
particle spacing.
High Reynolds number analysis consists in ®nding the potential with two spherical boundary

conditions (see e.g. Kok, 1993a for discussion). The inviscid interaction force is an inertial
repulsive force rapidly decaying with distance (Lamb, 1932; Harper, 1970). The equations of
motion for two bubbles (in general position) were derived by Biesheuvel and van Wijngaarden
(1982). Vertically aligned bubbles repel each other and separate unlimitedly.
For intermediate Reynolds number Re0102, the equations of motion for two bubbles (in

general position) were derived by Kok (1993a, 1993b), Kumaran and Koch (1993a, 1993b). In
their approximation, both particles experienced the same drag and the pair basically followed
the inviscid scenario (van Wijngaarden, 1993). The full Navier±Stokes equation was solved
numerically by Yuan and Prosperetti (1994, referred to as YP), and the true drag coe�cients of
both bubbles were calculated. The leading drag was almost una�ected and equal to the isolated
bubble drag. The trailing drag was reduced substantially by the shielding e�ect of the
preceding bubble: the lower the spacing, the higher the drag reduction. A stable bubble pair
with an equilibrium spacing was predicted. Harper (1997, referred to as H97), suggested a
general approach for calculations of drag force on bubbles rising in line, and his result for two
bubbles agreed well with that of YP. The drop in the trailing particle drag and no e�ect on the
leading particle drag were con®rmed by experiments (Lee, 1979; Tsuji et al., 1982; Temkin and
Ecker, 1989; Zhu et al., 1994) and simulations (Sirignano, 1993).

1.2. More bubbles

Low Reynolds number steady ¯ow past a line of particles ®xed in space was studied
theoretically (Wang and Skalak, 1969; Leichtberg et al., 1976b; Ganatos et al., 1978;
Pruppacher and Klett, 1978; Harper, 1983). The drag depended on the particle position in the
chain was minimum in the middle, increased symmetrically toward both ends (Leichtberg et al.,
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1976b; Ganatos et al., 1978), and decreased with increasing chain length and decreasing
particle spacing. Dynamic behaviour of three freely moving particles was studied
experimentally (Happel and Pfe�er, 1960) and re-pairing was observed. Leichtberg et al.
(1976a) performed a detail dynamic study of chains with 3±25 rigid particles. Pairing-o� was
observed at the front end and particles were gradually lost from the rear end. The split pairs
interacted in a complex way and produced a highly fragmented ®nal structure of the chain.
Pairing-o� for bubble chains was predicted on theoretical grounds (Morrison, 1973; Harper,
1983; Lerner and Harper, 1991;) and observed experimentally (Katz and Meneveau, 1996,
referred to as KM).
In high Reynolds number limit, the Harper's (Harper, 1970) two-bubble result also applies to

more bubbles; the interactive force has only the repulsive component. The potential was
calculated for groups of several spheres (Hel®nstine and Dalton, 1974) and in®nite row of
spheres (Michael, 1965).
In intermediate Reynolds number range, our knowledge about the chain behaviour is only

super®cial and very limited. No theory is available, except for the H97 approach. Experiments
(Wang and Liu, 1992; Liang et al., 1996) and simulations (Tal et al., 1983; Tsai and Sterling,
1990; Ramachandran et al., 1991; Chiang and Sirignano, 1993) with three particles gave ®rst
results on the particle drag. The leading drag was close to the single particle value, and both
trailing drags were roughly equal (for uniform spacing) and reduced, mainly at low particle
spacing. Both trailing particles displayed similar wake structures. KM performed experiments
on wake interactions between small and closely spaced bubbles in coalescent system at
relatively low Re 0.2±35 and the pairing-o� process was well documented. The bubbles in pairs
coalesced instead of forming the equilibrium doublet predicted by YP for Re 50±200. The
above cases refer to the situation in which a ®nite chain moves through a virtually in®nite
extent of ¯uid.
The situation when a virtually in®nite continuously generated chain passes through a ®nite

layer of ¯uid is qualitatively di�erent. Continuously generated chains of bubbles were studied
in numerous experiments (Poutanen and Johnson, 1959; Crabtree and Bridgwater, 1969;
Marks, 1973; Omran and Foster, 1977; Martin and Chandler, 1982; Li et al., 1997b, 1998).
These chains allowed for uniform spacing, rose faster than an isolated particle, and the chain
drag decreased with decreasing bubble spacing. The uniform spacing became unstable at low
Re and bubbles started to oscillate in a irregular way Ð chaos (Nguyen et al., 1996; Li et al.,
1997a). Chaotic behaviour was also observed at the bubbles formation at the ori®ce (Tritton
and Egdell, 1993; Mittoni et al., 1995; DrahosÏ et al., 1997) and explained by dynamic coupling
between the gas and liquid phases (Ruzicka et al., 1997).
It follows that we lack knowledge about detail dynamic behaviour of particles in one-

dimensional arrays at intermediate Re. Therefore, a simple modelling concept is suggested here
that enables us to calculate positions and velocities of individual particles within the chain
undergoing hydrodynamic interactions.

2. Model

Two kinds of bubble chain with di�erent boundary conditions are distinguished here: the
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free-end chain and the ®xed-end chain, Fig. 1. In the free-end chain, the ®rst and last particles
miss one neighbour. This corresponds to a ®nite chain freely moving through unbounded ¯uid.
The ®rst (leading) particle obeys a di�erent drag law than the remaining (trailing) particles. In
the ®xed-end chain, all particles are identical and trailing (interior) and have both neighbours.
This correspond to either the experimental situation, where the particles are continuously
supplied and pass through a ®nite layer of ¯uid (the chain is bounded by the nozzle from
below and by the surface from above) or the theoretical model, where the chain under study
represents a `window' within a longer chain.

Fig. 1. Two di�erent kinds of chain. (a) Free-end chain has no boundaries and the ®rst and last particles miss one
neighbour. (b) Fixed-end chain has two boundary particles 0 and N� 1:
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2.1. Local interactions of bubbles (nearest-neighbour approximation)

Let us consider spherical nondeformable incompressible equal-sized gas bubbles rising freely
under buoyancy in a vertical line in an unbounded body of quiescent liquid, Fig. 1(a). Three
forces are considered to act on each bubble: buoyancy, viscous drag, and inviscid inertia
forces. The simplest case is considered ®rst, where each bubble interacts only with the nearest
neighbours on each side, local interactions. This approximation provides the basic pattern of
chain behaviour. E�ects coming from distant bubbles, non-local interactions, are explored next,
as a correction to the local approximation.

2.1.1. Viscous force
The local viscous force equals the viscous component of the total pairwise interaction force

found by the numerical solution of the Navier±Stokes equation by YP.

1. It is assumed that the ®rst (leading) bubble has the same drag as the ®rst bubble in YP, and
all other (trailing) bubbles in the chain have the same drag as the second bubble in YP. In
other words, independent of their position within the chain, all trailing bubbles follow the
same drag law and are a�ected only by the nearest preceding wake. This assumption is
realistic since both experiments (Wang and Liu, 1992; Liang et al., 1996) and numerical
simulations (Tal et al., 1983; Ramachandran et al., 1991) on several particles in line show
that the wake structure of all trailing particles are similar and the drag values are close.
Additional support comes from long chains continuously generated in numerous
experiments (see Section 1), where the particles kept uniform spacing; this would be
impossible if each of them followed a di�erent drag law depending on its position.

2. It is assumed that no viscous e�ect on a given bubble comes from the bubble behind it. This
is a logical assumption since the viscous interactions between bubbles consist in creation of
velocity disturbances and generation of vorticity that are experienced only by the downchain
bubbles. This assumption is supported by the results of Ramachandran et al. (1991) and YP.
The viscous interaction force is thus directed upwards drawing a bubble into the preceding
wake.

Moore (1963) derived the expression for steady drag coe�cient of a single bubble at
intermediate Re,

C0 � 48Reÿ1�1ÿ F � Reÿ0:5�, �1�
where the drag factor F had a constant value F12:2: Reynolds number Re � 2rv0=n is based
on single bubble velocity

v0 �
�
8gr

3C0

�0:5

, �2�

with bubble radius r, liquid kinematic viscosity n, and gravity acceleration g. If we add the
second bubble to form a vertically aligned pair, the value of F is no longer constant but
depends on bubble position, bubble distance, and Re (YP). The following approximation
formulas were suggested (see Appendix A) for the leading and trailing drag factors:
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F1�s� � 2:2� 6 exp�1:2ÿ s� ÿ 30 exp�2:4ÿ 2s�, Leading bubble: 1 �3�

F2�s� � 2:2� 2:5�sÿ 2�ÿ0:6, Trailing bubbles: 2, 3, . . . ,N �4�
where s � d=r is the nondimensional centre-to-centre bubble distance and d is the dimensional
one. The comparison of the Eqs. (3) and (4) with the original data is shown in Fig. 2. The drag
force on bubble i rising with velocity vi in liquid of density r is given by

Di � 1

2
rv2i pr

2Ci, �5�

where the viscous drag coe�cient is given by

Ci � 48Reÿ1
ÿ
1ÿ FiRe

ÿ0:5� � Cd: �6�
The dimensional centre-to-centre distance between bubbles i and i� 1 is denoted by di �
xi ÿ xi�1 (Fig. 1(a)) and si � di=r: The drag factors are given by

Fi � F1�s1� for i � 1, Fi � F2�siÿ1� for i > 1: �Nearest-neighbour approximation� �7�
Fig. 3 shows the leading and trailing drag coe�cients versus bubble spacing for several Re. The
leading drag almost coincides with the single bubble value and is always greater than the
trailing drag. The leading bubble is, therefore, the slowest in the chain. The trailing drag is
considerably reduced by the shielding e�ect of the preceding bubble (cyclists know this e�ect
well). The limit single bubble value is approached slowly with increasing spacing, making the
viscous force long-range. The values of both the coe�cients C1 and C2 and their di�erence
C1 ÿ C2 decrease with increasing Re. The di�erence also decreases with increasing bubble
spacing at ®xed Re. Drag di�erence between any two neighbouring bubbles represents an

Fig. 2. Leading F1 and trailing F2 drag factors. Model (full lines); YP data (marks): Re � 50 (Q), Re � 100 (W),
Re � 200 (R); single bubble value F � 2:2 (dotted line).
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e�ective attractive force between them. This leads to the formation of bubble clusters. The
above facts are crucial for the chain behaviour.
It follows that the viscous component of the bubble±bubble interaction is a unidirectional

long-range attracting force accelerating a bubble into the wake of the preceding bubble with
intensity decreasing with increasing Re.

2.1.2. Inviscid force
The local inviscid (potential, inertial) force equals the inviscid component of the total

pairwise interaction force found by YP. This force comes from the inertial e�ects of a body
moving in ¯uid. The presence of the body induces a ¯ow ®eld that communicates pressure
forces on other bodies (Lamb, 1932; Milne-Thomson, 1968). For a vertically aligned pair of
equal bubbles, this force is symmetric, repulsive, and decaying rapidly with bubble spacing.
This re¯ects the simple fact that the liquid entrapped in the gap between rising bubbles moves
slowly and has higher pressure. The leading order term sÿ4 was found by several authors
(Lamb, 1932; Harper, 1970; Biesheuvel and van Wijngaarden, 1982; Kok, 1993a, 1993b;
Kumaran and Koch, 1993a, 1993b, YP).
The expression of the inviscid interaction force Pi, j, experienced by bubble i due to the

presence of the neighbouring bubble j � i21, is given by (Lamb, 1932, Article 138, Eq. (4);
Harper, 1970, Eq. (2.3):

Pi, j � 1

2
rv2j pr

2Ci, j, �8�

where Ci, j is the potential force coe�cient

Ci, j � 12sÿ4 � Cp: �9�

Fig. 3. (a) Leading C1 and (b) trailing C2 drag coe�cients of bubbles in vertical pair. Model (full lines); YP data
(marks): Re � 50 (Q), Re � 100 (W), Re � 200 (R); single bubble drag (dotted lines).
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The bubble spacing takes values s � si for j � i� 1 and s � siÿ1 for j � iÿ 1: Note the
symmetry Ci, j � Cj,i: The potential force does not depend on Re as it was obtained in the
inviscid limit. This force acts symmetrically to both sides and tends to distribute the particles
uniformly within the chain, and also splits the end bubbles o� the chain because of missing
neighbours.
It follows that the inviscid component of the bubble±bubble interaction force is a bi-

directional short-range repulsive force that accelerates neighbouring bubbles symmetrically to
both sides and does not depend on Re. The relative strength of the inviscid repulsion �2C12�
and the viscous attraction �C1 ÿ C2� between two bubbles is shown in Fig. 4. The equality of
these forces determines the value of the stable equilibrium distance. The pair is loosely coupled
at high Re because of low �C1 ÿ C2).

2.1.3. Bubble mass
Fluid exerts inertial resistance against the motion of an immersed body, the dynamic e�ect

of which can be accounted for by an increase of the body mass by a certain amount (Lamb,
1932). For an isolated spherical particle in unbounded ¯uid this amount called `added mass'
equals one half of the body displaced ¯uid

m � 0:5� 4

3
pr3r: �10�

Since a gas bubble in liquid is virtually massless, the added mass given by Eq. (10) represents
its total mass. The single bubble added mass was also used for two bubbles in pairwise
interactions by other authors (van Wijngaarden, 1993; Kumaran and Koch, 1993a, Kumaran
and Koch, 1993b).

2.1.4. Equations of motion
The resulting acceleration reaction of a bubble is given by buoyancy, viscous, and inertial

Fig. 4. Relative strength of the inviscid and viscous pairwise interaction forces: 2C12=�C1 ÿ C2�:
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forces. The buoyancy force is given by

Bi � 4

3
pr3�rÿ rgas�g1

4

3
pr3rg: �11�

The equation of motion for bubble i in the nearest-neighbour approximation reads:

�massi� � �accelerationi� � buoyancyi ÿ dragi � repulsioni�1 ÿ repulsioniÿ1, �12�
which in symbols becomes:

m _vi � Bi ÿDi � Pi, i�1 ÿ Pi, iÿ1: �13�
After substitution of Eqs. (5), (8), (10) and (11) the dimensional form of the model is:

_vi � a� b
�
ÿ v2i Ci � v2i�1Ci, i�1 ÿ v2iÿ1Ci, iÿ1

�
_di � vi ÿ vi�1, �14�

with the initial condition for bubble distances and velocities:

di�0� � di0, vi�0� � vi0, i � 1, . . . ,N: �14a�
Di�erent `boundary conditions' at the ends of the chain discriminate between the two di�erent
kinds of chain in Fig. 1(a) and (b):

Free-end chain: v0 � vN�1 � C1, 0 � CN, N�1 � 0, �14b�

Fixed-end chain: v0 � v1, vN�1 � vN, d0 and dN are given, C1, 0�d0�, CN, N�1�dN�: �14c�
In the ®xed-end chain, the ®rst bubble velocity v1 is given by the distance d0 from the virtual
preceding bubble 0 and the last bubble experiences upward repulsive force from the virtual
trailing bubble N� 1: For brevity, it is put:

a � 2g, b � 3=4r: �15�

2.1.5. Validity range and model parameters
The model is supposed to be valid for Reynolds number 50±200 and bubble spacing s > 2:6:

The bubble radius is ®xed to r � 0:4 mm, which represents the characteristic length scale. An
air 0.8 mm diameter bubble in water rises at about v0 � 15 cm/s of velocity (Duineveld, 1995;
Maxworthy et al., 1996), which represents the characteristic velocity scale. The characteristic
time is given by r=v0: Reynolds number remains the only free parameter of the model.

2.1.6. Numerical methods
The following numerical methods were used (Press et al., 1986). Nonlinear algebraic

equations for steady states were solved by the Newton method. The equations of motion were
integrated by the Adams±Bashford predictor±corrector method. These methods were used as
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they are implemented in the professional software package Mathematica 3.0 (Wolfram, 1996).
A more sophisticated analysis of the phase space (continuation of steady states on the
parameter, stability and bifurcation analysis) was performed with the computer program
CONT (Marek and Schreiber, 1995). The RRCHAOS program (Schouten and van den Bleek,
1996) was used for the analysis of chaotic signals (fractal dimension, Kolmogorov entropy).
Guckenheimer and Holmes (1986) provides a survey of the dynamical systems theory and
terminology.

2.2. Non-local interactions of bubbles (distant e�ects)

There are several reasons for adopting the nearest-neighbour approximation: (1) It is natural
to start with the simplest case and assume that the dominant e�ects come from the nearest
neighbours. (2) There are reliable data for drag force on a bubble pair by YP, whilst almost
nothing is known about the e�ect of distant bubbles. (3) Numerous experimental and
numerical data (see Section 1) support the assumption that the trailing drag does not depend
on the position in the chain. (4) Even in the nearest-neighbour approximation, the model is
able to reproduce the key phenomena observed in experiments (see Section 4). Non-local
interactions substantially complicate the chain description because every bubble obeys a
di�erent drag law depending on its position. This breaks the chain symmetry. To make the
analysis complete, it is necessary to quantify distant interactions and to explore their e�ects on
chain behaviour. Expressions for distant interaction forces are given in this section.

2.2.1. Viscous distant e�ects
There are several ways to ®nd the e�ect of distant preceding particles on the drag of a given

particle:

1. The wake model suggested for two bubbles by KM can be adopted to more bubbles. The
®rst step has recently been done by H97, and a divergent series was obtained of liquid
velocity disturbances created by passing bubbles.

2. H97 suggested an approach how to calculate drag on farther bubbles down the chain. The
method consists in successive calculation of the vorticity distribution around a bubble
(di�usion equation) and in the wake between bubbles (vorticity equation). Although the idea
is clear the calculations are not simple.

3. A detailed numerical study of the Navier±Stokes equation for three and more bubbles can
be performed, following the approach of YP, but it would be di�cult.

The ®rst choice is su�cient for the purpose of this study. The KM model will be adopted and
the divergence of the series avoided.

2.2.1.1. Estimates based on the KM model (limit drag C�).

1. Without viscous correction. KM assumed that the trailing bubble of the pair trails in the
wake of the leading bubble and experiences an additional velocity, hence, rises faster. This
additional velocity was expressed by the average over the bubble cross-section area of the
standard wake velocity pro®le
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uw, 1 � 0:5C0v0

�
1ÿ exp

�
ÿ Re

8s1

��
, �16�

where s1 is the distance from the preceding bubble. H97 expressed the cumulative velocity
disturbance generated by m preceding bubbles with spacing s0 as linear superposition of the
individual contributions

uw, m � 0:5 C0v0
Xm
j�1

�
1ÿ exp

�
ÿ Re

8js0

��
: �17�

The summands go like 1=j for large j and the series diverges logarithmically for m41:
However, for a ®nite number of preceding bubbles, the resulting drag coe�cient can be
calculated. Bubble n rises in ¯uid disturbed by nÿ 1 preceding bubbles and its drag is given
by use of Eq. (2) as:

Cn � 8gr=3�v0 � uw, nÿ1�2: �18�
Fig. 5 shows the drag coe�cients Cn (full lines) a�ected by the non-local interactions for
several values of n. The drag decrease down the chain is substantial. Drag falls to zero for
large n, which is not realistic but the results for low n are sensible. Namely, the value of C2

(no distant e�ects) is close to the YP value.
2. With viscous correction. The divergence of the series (17) can be avoided by accounting for

viscous dissipation in ¯uid. The standard wake pro®le used by KM results from timeless
balance between convection and di�usion of the conserved ¯uid momentum (Batchelor,
1967). This eternal pro®le, not subjected to viscous decay, can be a useful approximation on
time scales shorter than the viscous time scale L2=n: On longer scales, however, the velocity

Fig. 5. Non-local bubble drag from the KM model. Drags C2, 5, 10, 100, 1000 without viscous correction (full lines) fall
to zero. Drags C 02, 3, 4, 5, 10, 20, 50, 100 with viscous correction (dotted lines) converge to the limit C � (bold dotted line).
YP drag (= nearest-neighbour approximation) and single bubble drag (bold full lines) �Re � 100).
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disturbances created by bubbles die out as

u

u0
0exp

�
ÿ nt

L2

�
, �19�

which weakens the distant e�ects. L is a characteristic length scale, r say, and the time t
since the passage of bubble j is given by js0r=v0: The viscous correction factor a can be
de®ned

aj � exp

�
ÿ 2js0

Re

�
, �20�

by which the series (17) should be multiplied. The corrected series reads:

u 0w, m � 0:5C0v0
Xm
j�1

�
1ÿ exp

�
ÿ Re

8js0

��
�
�

exp

�
ÿ 2js0

Re

��
: �21�

The summands go like eÿj=j for large j and the series converges to a limit u 0w�Re, s0� for
m41: The formula (18) for the corrected drag then becomes

C 0n � 8gr=3
ÿ
v0 � u 0w, nÿ1

�2 �22�

and gives sensible results also for large n. Fig. 5 shows the drag coe�cients C 0n (dotted lines)
for several values of n. Corrected drag coe�cients take more realistic values and converge to
the limit curve C ��s0, Re� (bold dotted). The convergence is rapid and the curves C50 and
C100 coincide. The value of C100 is, therefore, taken as an acceptable approximation of the
limit C� in calculations. The existence of the limit results from balance between creation and
decay of liquid velocity disturbances. This fact has a very important implication for the
chain drag; after the passage of a certain number of bubbles, the drag coe�cient takes the
limit value C�, which is the same for all following bubbles. For 0.8 mm diameter bubbles
with a velocity of 15 cm/s and a spacing 20 bubble radii, it takes about 6 s for one hundred
of them to pass and reach the equilibrium drag. This means that after a short time all
bubbles in the chain obey the same drag law C� regardless of their position in the chain. The
distant e�ects are thus eliminated and the symmetry of the chain is recovered. The only
result of distant e�ects is that the actual chain drag is lower than the nearest-neighbour YP
drag (compare curves C� and YP in Fig. 5). This is, in e�ect, equivalent to an increase of
Re. The limit chain velocity is given by putting C� into Eq. (2):

v� �
�
8gr

3C �

�0:5

: �23�

This approach based on the KM wake model is fruitful and gives some insight into the
mechanism of the collective drag reduction. It seems, however, that this model, based on the
steady far-wake velocity pro®le behind each bubble, tends to overestimate the distant e�ects.
At low spacing, the predicted distant drag is roughly four times lower than the local drag
and roughly by one order smaller than the single bubble drag, Fig. 5. The velocity
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disturbances introduced by bubbles are hardly developed into the steady far-wake pro®le.
Moreover, the pro®le does not remain intact, but is run over and destroyed by all following
bubbles. This weakens the distant e�ects further more. Therefore, the limit drag C�

represents the lower bound of the real chain drag. On the other hand, the nearest-neighbour
YP drag (4) represents the upper bound of the real chain drag. Formulas like (21) should be
weighted by a coupling factor, which expresses the strength of the non-local interactions.
The approach suggested below is compatible with the present model and includes such a
coupling parameter.

2.2.1.2. Estimates based on the YP model (limit drag C ��). The distant e�ects can also be intro-
duced into the model (14) in the following way. We assume that the ®nal e�ect of all preceding
bubbles is proportional to the sum of YP corrections (4) to the single bubble drag factor F �
2:2: Because these e�ects decay with time due to viscosity, the sum must be multiplied by the
viscous correction factor a given by Eq. (20). The following drag factors are obtained for
bubbles 2, 3, and n:

F2 � 2:2� f2, 1

F3 � 2:2� f3, 2 � ka�3ÿ1�f3, 1

Fn � 2:2� fn, nÿ1 � k
Xnÿ2
j�1

anÿjfn, j, 0RkRkm, �Non-local interactions� �24�

where fn, j is the e�ect of bubble j on the drag of bubble n behind it and sn, j is their distance,

fn, j � 2:5
ÿ
sn, j ÿ 2

�ÿ0:6
, sn, j �

Xnÿ1
k�j

sk, j � nÿ 1, nÿ 2, . . . ,2, 1: �25�

The distance sn, j equals �nÿ jÿ 1�s0 for a chain with uniform spacing s0. The summands in
Eq. (24) go like eÿj=j0:6 for large j and the series converges to a limit f�Re, s0, k� for n41:
Drag coe�cients Cn calculated by putting Eq. (24) into Eq. (6) converge to the limit curve
C ���s0, k, Re�, of which C100 gives a su�cient estimate. The convergence is rapid, and C3 dif-
fers from the limit by 10%, and C20 by 3% (calculated for Re � 100 and k � 0:1). Again, this
means that after the passage of several dozens of bubbles, all following bubbles obey the same
drag law. The proportionality constant k stands for the strength of the non-local coupling
among bubbles. The value of k can be changed continuously in the model to explore the e�ect
of distant interactions in a wide range. The value of k varies from zero to a maximum value
km: For zero coupling, C �� coincides with its upper bound, the YP drag. For the maximum
coupling, C �� reaches its lower bound C�; this happens at the smallest permitted spacing s �
2:6 and gives km � 0:44: Fig. 6 shows the limit drag C �� (dotted lines) for several values of k.
The bold dotted line represents the limit drag at the maximum coupling, the lowest distant
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drag considered here. Similarly as in Eq. (23), the chain velocity v �� is obtained by putting C ��

into Eq. (2).
It follows that the non-local viscous interactions can not generally be neglected. This is due

to the long-range nature of these forces and their asymmetric, unidirectional, and cumulative
character. These e�ects are considered in this study and incorporated into the model merely by
replacing the local formula (4) with the distant formula (24).

2.2.2. Inviscid distant e�ects
Inertial e�ects due to body motion in ¯uid manifest themselves in two ways: (1) by e�ective

increase of body mass and (2) by pressure forces on other bodies. In the nearest-neighbour
approximation, the isolated particle added mass was used for all bubbles in the chain and the
inviscid two-body force formula was used for multi-body system. The error being made is
estimated here.

2.2.2.1. Added mass. The added mass is basically a tensor quantity (Batchelor, 1967) whose el-
ements are the inertial coe�cients. Values of these coe�cients depend on positions and shapes
of all surfaces presented in the ¯uid. These coe�cients are also called added mass coe�cients,
and represent the portion of the body-displaced ¯uid to which the added mass equals:

c � �added mass�
�body volume�rfluid

: �26�

For a single particle, the added mass coe�cient is c0 � 1=2: For two equal particles moving in

Fig. 6. Non-local bubble drag from the YP model. Limit drag C �� (dotted lines) falls with increasing distant
coupling k. Minimum limit drag corresponds to maximum coupling km � 0:44 (bold dotted line). The family of C ��

curves is limited (bold full lines) from above by the YP drag (upper bound) and from below by the KM limit drag
C � (lower bound) �Re � 100).
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line of centres, there are three inertial coe�cients (Lamb, 1932, Article 98):

L � N � c0
ÿ
1� 3�s2 ÿ 1�ÿ3� � � �

�
0s0 � sÿ6 � � � �

M � 3c0s
ÿ3
ÿ
1� �s2 ÿ 2�ÿ3� � � �

�
0sÿ3 � sÿ9 � � � � : �27�

Thus, the addition of one more particle causes e�ects only of O�sÿ3� to the single particle value
O�s0�: Such e�ects are weak and will be neglected in this study. For more particles in line with
uniform spacing, two important results were obtained (Michael, 1965; Hel®nstine and Dalton,
1974). First, at larger spacing, all particles have the same and constant value of the added mass
equal to c0. For example, in a long chain, about 90% of the single particle value is reached at
s � 4: Second, at low spacing (in a chain with ®ve and more particles), the added mass of all
interior particles is the same (i.e. depends on distance in the same way) and is slightly lower
than c0. This means that all inner particles experience the same acceleration reaction to the
applied force. The symmetry of the chain is not broken. Only the two end particles of a ®nite
chain have a slightly higher mass than the rest.
It follows that the use of a constant value of added mass for more bubbles in chain is an

acceptable approximation. In this study, where very low spacing or touching of bubbles is
excluded and bubble separation is typically not extremely low, the single bubble value c0 is
applied.

2.2.2.2. Inviscid force. The inertial coe�cients like L, M, and N are also coe�cients of the
quadratic form of the kinetic energy of the ¯uid-particle system. The potential interaction force
is given by the derivatives of these coe�cients with respect to co-ordinates (Lamb, 1932, Article
135±136).
For the interaction of two particles, the leading order force term O�sÿ4� comes from the

spatial derivative of the coe�cient M with error O�sÿ7�: This force is given by Eqs. (8) and (9)
and is used in the nearest-neighbour approximation. In this approximation, with single particle
added mass applied to both particles, the Lagrange equations of motion for two particles given
by Lamb (1932, Article 138 and used by YP Eq. (5.1)) reduce to the local-interaction model
suggested in this study (Eq. (14)). The fact that this model agrees well with YP results provides
support for neglecting the distant inertial e�ects. For interaction of more particles, the inertial
coe�cients of all inner particles display the same dependence on distance (Michael, 1965;
Hel®nstine and Dalton, 1974) so that their spatial derivatives are also the same. Thus, the
particles obey the same force law regardless of their position in the chain. The inviscid force is
expected to equal the two-body force (Eq. (8)) at larger spacing and to be slightly modi®ed at
lower spacing.
If the distant e�ects are approximated by linear superposition of the two-body force (Eq.

(8)), the total inertial force on bubble n in Eq. (13) becomes

Ppot, n � 1

2
rpr2

"X
j>n

v2j Cn, j ÿ
X
j<n

v2j Cn, j

#
, Cn, j � 12sÿ4n, j, �28�

and depends on positions and velocities of all neighbours. Assuming that the particle velocities
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in the chain are comparable, which is reasonable, the total inertial force coe�cient of bubble n
is given by the symmetric composition of the identical contributions from neighbours on both
sides,

Cpot, n0
X
j>n

Cn, j ÿ
X
j<n

Cn, j: �29�

The e�ect of the kth neighbour falls as �ks0�ÿ4, so that the relative strength of neighbours 1, 2,
3, 4, . . . is 1, 1/16, 1/81, 1/256, . . . and the inviscid interactions are controlled mainly by the
nearest neighbours. This rapid fall with distance also makes the e�ects of unequal number of
left and right neighbours negligible. The distant inertial e�ects, therefore, do not break the
symmetry of the chain. The inertial coe�cients of the two outer bubbles di�er slightly from the
rest. These bubbles do not occur in the ®xed-end chain. In the free-end chain, the dominant
asymmetry of the ®rst bubble is given by the di�erent drag law and that of the last bubble by
the missing neighbour. These `®rst-order e�ects' are much stronger than the asymmetry caused
by the di�erent value of the inertial coe�cients at a spacing typically occurring in this study.
The distant inertial coupling might become important in a purely inviscid chain. These subtle
e�ects would possibly a�ect the structure of the Hamiltonian dynamics, which is oversensitive
and inherently unstable on its own.
It follows that the non-local inviscid interactions can be neglected. At bubble spacings

relevant to this study, the inertial coupling is weak both absolutely and relatively, compared
with the viscous coupling (compare summands in Eqs. (24) and (29)). This is due to the rapid
fall of the inertial forces with distance and their symmetric character. The nearest-neighbour
approximation of the potential interactions will be used throughout in this study.

3. Results

3.1. Free-end bubble chain

The relevant equations of motion are (14) with the free-end boundary condition (14b).
Notions `low Re' and `high Re' refer to the model range Re � 50±200:

3.1.1. Two bubbles
The model validation is given here by comparison with the YP results, which are supposed

to be correct. YP predicted a steadily rising pair separated by an equilibrium distance.
Equations of motion for the leading bubble 1 and trailing bubble 2 become:

_v1 � a� b
ÿÿ v21C1 � v22C1, 2 ÿ 0

�
_v2 � a� b

ÿÿ v22C2 � 0ÿ v21C2, 1

�
_d1 � v1 ÿ v2: �30�
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Steady state. A steady state (equilibrium point, stationary solution) represents the long-time
behaviour of the chain, which is reached from a given initial condition after a temporal
transition period. A stable steady state of an N-bubble chain means that all N bubbles with
equal velocities rise together in one piece. An unstable steady state or the absence of the
stationary solution mean that this is not possible and that the chain must split into smaller
fragments. The steady values of distances and velocities depend on the model parameters, here
on Re only.

The steady state condition for the pair is: v1 � v2 and C1 ÿ C2 � 2C1, 2: The latter relation
means: attraction = repulsion, see Fig. 4. Obviously C1 > C2 and the di�erence C1 ÿ C2 holds
the pair together. Fig. 7 shows the parameter dependence of the steady pair spacing, which
compares well with YP. The slight departure from YP data is the price for avoiding the
dependence on Re of factors F1, 2 in the present model. The equilibrium drag coe�cients are
ordered C0 > C1 > Cs > C2 and shown in Fig. 8. The steady pair drag Cs is the mean drag of
the pair. The pair is always faster than a singlet because the pair is more streamlined. This is
especially true at low Re, where the trailing drag reduction is high, the attractive force is large,
and the pair is strongly compressed. The pair drag reduction is mainly due to low C2 since C1

practically equals the single bubble drag. The trailing drag increases faster with spacing than it
falls with Re at low Re, which causes the hump in the C2 graph. The steady pair velocity is
given by:

vs �
�

a

bCs

�0:5

�
�
8gr

3Cs

�0:5

, Cs � �C1 � � � � � Cn�
n

: �31�

The pair velocity follows the single bubble formula (2) and (31) holds for any steady bubble
fragment with n bubbles.

Fig. 7. Free-end chain. N � 2: Parameter dependence of steady pair spacing: Model (line), YP data (marks) Q.
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Transient dynamics. The equilibrium point is a stable node with real negative eigenvalues of
order ÿ101 and ÿ102 giving the characteristic time scales associated with relaxation of small
perturbations of 0.1±0.01 s. The orientation of the eigenvectors in the phase space at the
equilibrium point makes the velocities fast variables and the distance slow variable with their
characteristic time scales separated by a gap of more than one order. The fast mode behaviour
can be neglected in the long-time horizon, where the dynamics is governed by the slow modes
and it is su�cient to pay attention to the distances only. The pair transition dynamics is rather
simple; reaching the stable equilibrium from all possible initial conditions. The solutions shown
in Fig. 9 correspond to Fig. 12±14 in YP. The present model compares well with the YP data.
The discrepancy at early times is ascribed to the development of the boundary layer on the
bubbles (10±20 units of the nondimensional time), which is not covered by the present model.

It follows that the model reproduces the basic features of the pair dynamics well. This
justi®es the use of the single particle added mass and the leading order term expression for the
inviscid force.

3.1.2. Three bubbles

3.1.2.1. Local interactions. The relevant equations of motion are (14) with the local drag (7).
There are two trailing bubbles 2 and 3 following the same drag law F2 � F3:

Steady states. Again, the steady state condition expresses the force balance between attraction
and repulsion for the three bubbles. Unlike the case of two bubbles, there is no steady solution
for Re < 135 so that the long-time chain is broken into fragments and the only attractor is in-
®nity being approached along d2 direction. This corresponds to fast leading pair 1&2 followed

Fig. 8. Free-end chain. N � 2: Parameter dependence of steady pair drag coe�cients: C0 > C1 > Cs > C2:
Correlations for steady pair drag Cs and velocity vs.
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by slow singlet 3 with distance d2 between them diverging in time. Two steady solutions are
created by saddle-node bifurcation at the limit point Re1135: The stable node represents the
stable equilibrium triplet 1&2&3 and the (unstable) saddle corresponds to two fragments, the
leading doublet and trailing singlet. The initial conditions yielding triplets lie in the basin of
attraction of the node, Fig. 10. Above the separatrix line, triplets cannot be formed. Fig. 11
shows the parameter dependence of the stationary branches. The steady spacing s1 in the triplet
is always smaller than s2 (and also slightly smaller than that in the doublet), because the second
bubble is pushed upwards by the third bubble. Bubble 3 is repelled farther from the pair due
to the missing neighbour behind it. The steady drags are ordered C0 > C1 > Cs > C3 > C2 and
shown in Fig. 12. The individual drags in a triplet are slightly less than those in a pair, so that
the triplet is slightly faster.

Fig. 9. Free-end chain. N � 2: Transition dynamics of pair. Initial spacing s � 3 (a), s � 5 (b), and s � 8 (c). Initial

velocities v1, 2 � 0: (Time scaled by r/v0, velocities by v0).
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Dynamic behaviour.

1. Triplet formation: The physical reason for the saddle-node bifurcation yielding the triplet is
the following. Bubble 2 catches the slow bubble 1 and forms fast leading pair 1&2 that
escapes. To join this pair, bubble 3 must come close and reduce its drag to the pair level. If
the drag di�erence between the doublet and singlet is large, especially at low Re, Fig. 8, the
singlet must come very close, which is impossible due to the strong repulsion. The drag
di�erence falls with increasing Re making the merger possible for Re > 135:

2. Re-pairing: If a leading singlet is attacked by a trailing pair from below and a triplet cannot
be formed, re-pairing occurs. Bubble 1 attracts bubble 2 by wake suction, drag C2 is reduced
as well as the di�erence C2 ÿ C3 holding the pair 2&3 together. The pair expands and slows
down. Bubble 2 is attracted by bubble 1 and repelled from bubble 3. When spacing d2
reaches the value corresponding to the equilibrium leading pair spacing, the trailing pair

Fig. 10. Free-end chain. N � 3: Phase plane (s1, s2): initial conditions for triplet lie below the separatrix line,
conditions for fragmented chain (doublet and singlet) above the line �Re � 140).

Fig. 11. Free-end chain. N � 3: Parameter dependence of steady solution: stable node = triplet (full lines), unstable
saddle = two fragments, doublet and singlet, (dotted lines).
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2&3 splits and the leading pair 1&2 forms and accelerates, leaving bubble 3 behind. Re-
pairing is thus completed, see Fig. 13 (full lines).

3. Collision dynamics: Re-pairing is essentially a dynamic phenomenon consisting in the
exchange of a bubble between two fragments. This is a typical phenomenon in chain
collision dynamics. In the nearest-neighbour approximation, three bubbles are enough to
simulate an early stage of a two-fragment collision. A test pair stands for the fragment
under study and a singlet placed either ahead or behind the test pair simulates the e�ect of
the approaching fragment. A bubble placed ahead destabilises the pair; the pair expands,
slows down, and loses its pivot. The pivot is easily split at high Re, where the bubble ahead

Fig. 12. Free-end chain. N � 3: Parameter dependence of steady triplet drag coe�cients: C0 > C1 > Cs > C3 > C2:
Correlations for steady triplet drag Cs and velocity vs.

Fig. 13. Free-end chain. N � 3: Re-pairing. Bubble distances (a) and velocities (b) versus time. Nearest-neighbour
approximation (full lines). Distant e�ects (dotted lines): descending k � 0:044, 0.066, and 0.088. Initial spacing
s1 � 20, s2 � 5 and velocities v1 � v2 � 0 �Re � 100).
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is `felt' from a large distance, Fig. 14 (full lines). A bubble placed behind stabilises the pair;
the pair is compressed from below, made streamlined and faster, Fig. 14 (dotted lines).

3.1.2.2. Non-local interactions. The relevant equations of motion are (14) with the non-local
drag (24). Compared with bubble 2, the drag of bubble 3 is additionally reduced by the velocity
disturbances created by the distant bubble 1: F2 < F3 and C2 > C3: Bubble 3 has lower drag
than bubble 2 (when equally spaced, of course).

Steady states. Calculations show that the critical point in Fig. 11, where the steady solution
appears, shifts to the left while increasing the coupling parameter k. The following values were
found: Rec � 135, 130, 125, 120, 94, 57, for k � 0, 0.01, 0.02, 0.03, 0.1, 0.3. The Reynolds num-
ber range for triplet formation Re > Rec expands and the re-pairing range Re < Rec reduces.
The true value of k can be determined experimentally by ®nding the critical value of Re, where
three closely spaced bubbles merge into the triplet. Due to the distant coupling between
bubbles 1 and 3, the total triplet drag is reduced and the velocity increased.

Dynamic behaviour.

1. Triplet formation: The drag di�erence between the fast leading pair 1&2 and the singlet 3 is
reduced by the distant coupling (low C3) so that the triplet can form at lower Re.

2. Re-pairing: The process of re-pairing is not a�ected much when the coupling is weak.
However, at about 20% of the maximum coupling, the merger of the two fragments occurs
instead of re-pairing. The drag C3 is so low that the trailing pair survives the collision and
does not split; spacing s2 settles at a constant value, Fig. 13 (dotted lines).

Fig. 14. Free-end chain. N � 3: Collision dynamics. A bubble ahead of the test pair causes expansion and breakup
of the pair (end points of the full lines). A bubble behind causes compression of the pair (dotted lines). Ascending:
Re � 60, 100, 180.
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3.1.3. Four bubbles

3.1.3.1. Local interactions.

Steady states and periodic orbits. The typical feature of a four-bubble chain is the interaction of
two pairs: merger, separation, oscillation, pairing-o�, and re-pairing. No steady solution was
found for Re < 51, where the chain splits into two fragments, two pairs, with the diverging dis-
tance between them. Two stationary solutions were found for Re 51±87, the stable and unstable
branch. The stable branch representing the equilibrium quadruplet 1&2&3&4 is a stable node
for Re 51±65 and becomes a stable centre for Re 66±87. The centre loses stability and under-
goes Hopf bifurcation at Re187, where a stable periodic solution Ð the limit cycle Ð
branches o�. The limit cycle loses stability at about Re1110 and in®nity remains the only
attractor. It is ®rst approached along d2 direction, where the chain spontaneously splits into
pairs: pairing-o�. The orientation of the eigenvectors changes at Re1135 and the diverging
direction becomes d3. One bubble is exchanged between the two pairs, and they recombine into
the leading triplet 1&2&3 and trailing singlet 4 via re-pairing. The initial conditions determine
which attractor will be approached, see Table 1. Fig. 15 shows the parameter dependence of
the stable branch corresponding to the steady spacing in the quadruplet. The quadruplet drag
coe�cients are ordered C0 > C1 > C3 > Cs > C4 > C2 and shown in Fig. 16.

Dynamic behaviour.

1. Pairing-o�: Pairing-o� is the archetype of free-end chain behaviour. Pairing-o� is usually the
®rst step in the chain evolution from a uniform initial spacing. The dynamics of pairing-o�
is simple: bubble 2 approaches bubble 1, fast pair 1&2 forms, accelerates, and escapes.
Bubble 3 acquires the large single bubble drag and becomes the new pivot of the rest of the

Fig. 15. Free-end chain. N � 4: Parameter dependence of steady bubble spacing in quadruplet (in nearest-neighbour
approximation the solution exists for Re 51±87).
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Table 1

Free-end chain. Long-time quasi-steady fragmented chain structure for several values of Reynolds number and initial spacinga

N s0 Re

60 80 100 120 140 160 180 200

3 3 2+1 2+1 2+1 2+1 3 3 3 3

10 2+1 2+1 2+1 2+1 2+1 2+1 3 3
50 2+1 2+1 2+1 2+1 2+1 2+1 2+1 2+1

4 3 4 2+2 2+2 2+2 3+1 3+1 3+1 3+1

10 4 4 4� 2+2 3+1 3+1 3+1 3+1
50 2+2 2+2 2+2 2+2 3+1 3+1 3+1 3+1

5 3 4+1 4+1 4�+1 2+2+1 3+2 3+2 3+2 3+2

10 4+1 4+1 4�+1 2+2+1 3+2 3+2 3+2 3+2
50 2+2+1 2+2+1 2+2+1 2+2+1 3+2 3+2 3+2 3+2

6 3 4+2 4+2 4�+2 2+2+2 3+2+1 3+2+1 3+2+1 3+2+1
10 4+2 4+2 4�+2 2+2+2 3+2+1 3+2+1 3+2+1 3+2+1

50 2+4 2+4� 2+2+1+1 2+2+2 [3+3] [3+3] [3+3] [3+3]
7 3 4+2+1 4+2+1 4�+ 2+1 2+2+2+1 [3+3]+1 [3+3]+1 [3+3]+1 [3+3]+1

10 4+2+1 4+2+1 4�+2+1 2+2+2+1 [3+3]+1 [3+3]+1 [ 3+3]+1 [3+3]+1

50 2+4+1 2+4�+1 2+2+1+1+1 2+2+2+1 [3+3]+1 [3+3]+1 [3+3]+1 [3+3]+1
8 3 6+2 6+2 4�+2+2 5+2+1 [3+3]+2 [3+3]+2 [3+3]+2 [3+3]+2

10 4+4 4+4� 4�+2+2 5+2+1 [3+3]+2 [3+3]+2 [3+3]+2 [3+3]+2

50 2+4+2 2+[4+2]� 2+2+1+1+1+1 2+(5)+1 [3+3]+2 [3+3]+2 [3+3]+2 [3+3]+2
9 3 6+2+1 6+2+1 4�+2+2+1 5+3+1 [3+3+3] [3+3+3] [3+3+3] [3+3+3]

10 4+4+1 8+1 4�+2+2+1 5+3+1 [3+3+3] [3+3+3] [3+3+3] [3+3+3]

50 2+4+2+1 2+4�+2+1 2+2+1+1+1+1+1 2+(5)+2 [3+3]+2+1 [3+3]+2+1 [3+3]+2+1 [3+3]+2+1
10 3 6+4 6+2+2 4�+2+2+2 5+3+1+1 [3+3+3]+1 [3+3+3]+1 [3+3+3]+1 [3+3+3]+1

10 4+4+2 8+2 4�+2+2+2 5+3+2 [3+3+3]+1 [3+3+3]+1 [3+3]+3+1 [3+3]+3+1
50 8+2 2+[4+4] 2+2+1+1+1+1+1+1 2+2+(6) [3+3+3]+1 [3+3+3]+1 [3+3]+3+1 [3+3]+3+1

a N: chain length, Re: Reynolds number, s0: initial uniform spacing. Bubble groups: 2+4+1 Ð leading pair followed by quadruplet followed by
singlet; 4� Ð oscillating quadruplet; [3+3] Ð two triplets too widely separated to be considered as hexaplet; (5) Ð ®ve bubbles not settled down

with distances varying on very long time scales. The fragments are ordered according to their rising velocities. Distances between fragments grow
(almost linearly) with time. Initial velocities vi � 0:.

M
.C
.
R
u
zick

a
/
In
tern

a
tio

n
a
l
J
o
u
rn
a
l
o
f
M
u
ltip

h
a
se

F
lo
w
2
6
(
2
0
0
0
)
1
1
4
1
±
1
1
8
1

1
1
6
4



chain: bubble 3 is approached by bubble 4, fast pair 3&4 forms, accelerates, and escapes,
etc. This viscous instability progresses farther downchain. The slowest bubble 1 in the free-
end chain holds the rest like a compressed spring; once this keystone is removed, the rest
explodes and splits into pieces. Drag C1 roughly equals C0 and is basically constant (no
preceding wake). The only way to get rid of bubble 1 is to incorporate it into a fast group,
the doublet here. Pairing-o� does not occur at high Re, where the attraction in pairs is weak
and the repulsion is strong. Pairing-o� in a seven-bubble chain predicted by the model is
shown in Fig. 18. The pairs thus formed undergo subsequent interactions resulting in the
long-time chain structure that depend on Re, as re¯ected by the bifurcation sequence. The
physical picture of the bifurcation sequence is the following.

2. Quadruplet formation: Quadruplet basically is a weak composition of two pairs. The drag
di�erence between two similar fragments, two pairs, is low and they easily can merge at low
Re (in contrast to two di�erent fragments, doublet and singlet, in three-bubble chain). This
actually happens at Re � 51:

3. Oscillation: A further increase of Re corresponds to increase of inertial e�ects. These e�ects
are negligible in the overdamped dynamics of the stable node. However, at higher Re, the
particles overshoot the equilibrium point in damped oscillations around the stable centre. As
the inertial interactions increase further, the pairs start to disturb each other more and
more, which results in persistent oscillations around the unstable centre. The mechanism of
these oscillations is the following. The slightly faster trailing pair approaches the leading one
from below. Coming closer, the trailing pair expands and slows down (e�ect of a bubble
ahead) while the leading pair compresses and accelerates (e�ect of a bubble behind). The
distance between the pairs increases again, both pairs relax back to normal, and we are
where we started from. This `breathing' of the pairs sustains stable nonlinear oscillations, see
Fig. 17, which are made possible by the fragile balance between the inertial and viscous
forces.

Fig. 16. Free-end chain. N � 4: Parameter dependence of steady quadruplet drag coe�cients:
C0 > C1 > C3 > Cs > C4 > C2: Correlations for steady quadruplet drag Cs and velocity vs.
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4. Fragmentation: This subtle balance breaks at a higher Re and the pairs separate. At an even
higher Re, the trailing pair comes close to the leading pair and is split by re-pairing.

3.1.3.2. Non-local interactions.

Steady states. The distant e�ects display the ambiguous Shiva tendency to both create and
destroy stable equilibria. They change the nearest-neighbour solution in Fig. 15 in the following
way. Both bifurcation points limiting the quadruplet range move to the left with increasing k:
Re 2 �51, 87�, [50, 82], [50, 79], [50, 75], [50, 58], [50, 50] for k � 0, 0.01, 0.02, 0.03, 0.1, 0.3.

Fig. 17. Free-end chain. N � 4: Oscillations of rising quadruplet: bubble distances (a±c) and velocities (d). Nearest-
neighbour approximation (full lines). Distant e�ects at k � 0:001 (dotted lines). Initial spacing si � 10 and velocities

vi � 0 �Re � 100).
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The left point of the interval shifts to smaller values of Re for reasons already explained for
the three-bubble chain. The right point moves the same way because the strong bounce of the
pairs caused by distant e�ects make them oscillate sooner. Again, the value of k can be deter-
mined by ®nding the critical value of Re experimentally.

Dynamic behaviour. At low Re, the closely spaced quadruplet is destabilised and eventually split
when increasing k. This is caused mainly by the inertial forces. The trailing pair has a consider-
ably lower drag than the leading pair. The large deceleration on approach turns into a large
collision force that makes the pairs oscillate. A further increase of k destroys the oscillation
balance and the quadruplet splits into pairs. An even further increase of k shows the creative
face. Bubbles 1, 2, and 3 are condensed into a triplet and then bubble 4 is added. The chain
structure follows the sequence: 444�42� 243� 144 (see the legend of Table 1) with the
transitions at k � 0:08, 0.24, 0.27, 0.55 (calculated for Re � 60 and initial values s0 � 3,
v0 � 0). Highly separated bubbles are ®rst brought together, made to oscillate, then separated
again, to be eventually merged: 2� 244�42� 243� 144 at k � 0:18, 0.24, 0.27, 0.55
�Re � 60, s0 � 50). Weak coupling increases both the amplitude and period of the oscillations;
both the spacing and the relaxation time are higher after a stronger bounce, Fig. 17. Similar
tendencies were found at medium Re. The fusion of bubble fragments 2� 243� 144 takes
place at k � 0:03 and 0.26 �Re � 120, s0 � 3). Distant e�ects break the oscillating quadruplet,
split it into pairs, and then condense again, 4�42� 243� 144 at k � 0:019, 0.09, 0.5
�Re � 100, s0 � 10). At high Re, a new stable steady branch (and several unstable branches) is
created at Re � 200 and progresses to lower Re reaching values 187, 155, 99, . . . at k � 0:17,
0.2, 0.3, . . . . A quadruplet can thus be formed instead of triplet and singlet even at high Re
due to non-local e�ects (cf. Table 1).

3.1.4. More bubbles

3.1.4.1. Local interactions.

Long-time chain structure. Long-time highly fragmented structures of chains up to 10 bubbles
are presented in Table 1. The uniform initial spacing was chosen in simulations because it (1)
lies on the diagonal of the phase space and passes through its central part and (2) is easy to
produce experimentally. The resulting chains are composed of several quasi-steady bubble frag-
ments of di�erent lengths and velocities with diverging distance between them. The resulting
chain structure displays certain recurrent features that are expected to repeat for longer chains.
Due to the asymptotic nature of the interaction forces, bubbles may take a considerable time
(102±105 s) to produce these quasi-steady patterns. Fragments a�ect each other from extremely
long distances and their relative velocities are very low. This results in long-time unsteadiness
of the chain dynamics.

Chain dynamics. The important elements of chain dynamics have already been discussed in the
preceding sections. At low Re, pairing-o� typically starts the evolution of a chain with a uni-
form spacing, Fig. 18. The released pairs subsequently recombine into a number of fragments
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of various lengths and velocities (the same mixture would result from non-uniform initial spa-
cing). The fragment drag depends on its length, i.e. number of bubbles and spacing. Com-
pressed fragments with low spacing are faster. Trailing fragments with higher velocities collide
with the slower preceding ones. On approach, the leading fragment is compressed and acceler-
ated upwards while the trailing fragment is expanded and slowed down. The outcome of the
collision depends on fragment size, collision velocity, and Re. The typical results are the follow-
ing: merger, separation, re-pairing, and oscillation. The ®rst three are demonstrated in Fig. 19.
The interactions of bubble fragments can be very complicated, see Fig. 20. A sequence of nu-
merous complex collisions eventually results in the long-time chain structure where the frag-
ments are ®nally ordered according to their rise velocities. The free-end chain may possess a
stable equilibrium solution where all bubbles rise in one piece, but the spacing cannot be uni-
form.

3.1.4.2. Non-local interactions. The distant e�ects result in progressive drag reduction down the
chain until the limit drag C �� is reached. This drag does not depend on bubble position, and
applies to the rest of the chain. The convergence is rapid so that the distant e�ects can in¯u-
ence only the ®rst several dozen bubbles and could be important for short chains. The down-
chain drag gradient generates an additional viscous attractive force between bubbles. This force
enhances the viscous instability of pairing-o�, Fig. 18, and also leads to formation of longer
fragments at low Re. At high Re, the additional drag di�erence between fragments results in
higher relative velocity that turns into a large collision force and a more broken chain structure
is produced.

3.1.5. Low/high Reynolds number limit
In low Reynolds number limit, only the attractive viscous force (5) remains in the equations

Fig. 18. Free-end chain. N � 7: Pairing-o�. Nearest-neighbour approximation (full lines). Distant e�ects at k � 0:2
(dotted lines). Initial spacing si � 20 and velocity vi � 0: Fixed-tail spacing s7 � 20 �Re � 120).
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of motion (14). Because of the absence of any repulsion, this attraction leads to physical
contact between colliding particles and to coalescence in real coalescent systems. For a uniform
initial spacing, pairs of touching particles gradually pair o� the chain. In a chain with non-
uniform spacing, closely spaced particles form clusters that condense in collisions and form
even longer clusters. Non-local viscous interactions, which increase the attractive force, will
enhance the tendency to aggregation.
In high Reynolds number limit, only the repulsive inviscid force (Eq. (8)) controls the chain

Fig. 19. Free-end chain. N � 5: Interaction of fragments in bubble chain. (a) Merger of two pairs after pairing-o�
(quadruplet 1&2&3&4+singlet 5, s4 diverges) �Re � 80), (b) separation of two pairs (doublet 1&2+doublet
3&4+singlet 5, s2, 4 diverge) �Re � 120), (c) re-pairing (triplet 1&2&3+doublet 4&5, s3 diverges and s4 returns later

on) �Re � 140).
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behaviour. The chain expands unlimitedly due to the absence of any boundary. Possible non-
local inviscid interactions, which increase the repulsive force, will advance the separation.

3.2. Fixed-end bubble chain

The relevant equations of motion are (14) with the ®xed-end boundary condition (14c).
Unlike the free-end chain, all particles here obey the same drag law (Eq. (4)) and allow for
uniform spacing given by the boundary values s0 � sN: This equilibrium spacing may be either
stable or unstable. Propagation of disturbances along the chain and complicated dynamics are

Fig. 20. Free-end chain. N � 7: Interaction of fragments in bubble chain. Complicated collisions ®naly yield a long-
time broken structure of the chain (doublet+doublet+doublet+singlet, s2, 4, 6 diverge): converging spacings (a),

diverging spacings (b) �Re � 120).
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the typical features of the ®xed-end chain. This kind of chain represents the hydrodynamic
counterpart of the mechanical masses-on-spring system.

3.2.1. Vertical stability
Linear stability analysis shows that low uniform spacing is stable while high spacing is not.

An N-bubble chain has 2Nÿ 1 eigenvalues (N velocities and Nÿ 1 distances) that are both real
and complex conjugated and depend on Re and s0. N directions are always stable with
eigenvalues approx. ÿ101, however, Nÿ 1 directions become unstable approx. +10ÿ1 almost
simultaneously at the critical values of the parameters. The eigenvalues are almost independent
of the number of bubbles in the chain (calculated for 2±10 bubbles). The critical value of the
spacing is shown in Fig. 21. The unstable region increases with decreasing Re. Calculations
show that the instability is caused mainly by viscous e�ects.

1. Local disturbances: Deviations from uniform spacing represent concentration (density)
disturbances. The departure from uniformity can be either positive (gap) or negative
(compression). The evolution of disturbances depends on Re because there are two di�erent
transmission mechanisms, viscous and inviscid. The inviscid mechanism propagates a gap
symmetrically to both sides. The gap is ®lled with the two nearest bubbles repelled from
their neighbours, the original gap closes, and two new gaps are created next. The viscous
mechanism consists basically in pairing-o� below the gap and progresses downwards. The
bubble below the gap behaves as the leading bubble in the free-end chain. Pairing-o� in this
context transmits a sequence of alternating compressions (spacing in pairs) and gaps
(spacing between pairs). The viscous mechanism works against the inviscid one and this
reduces the amplitude in the downward direction. The propagation of a local gap in a 10-
bubble chain is shown in Fig. 22, where one particular distance s5 was perturbed. The
downchain amplitude (spacing 6 and more) is smaller than upchain amplitude (spacing 4
and less).

2. Large-scale disturbances: A spacing disturbance in a longer part of the chain mimics a

Fig. 21. Fixed-end chain. N � 2±10: Vertical stability of the chain. Uniform spacing is unstable at large spacing and
low Reynolds number (positive real parts of eigenvalues).
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macroscopic region with higher or lower particle concentration in uniform one-dimensional
medium. The chain represents a window with spacing s ' within a longer chain with spacing
s0 6�s 0: For compression s 0 < s0, the relaxation of s ' to s0 is quick and almost simultaneous
for all bubbles. The more compressed window merely expands like a spring. For a gap,
s 0 > s0, the return is slow and proceeds subsequently from the bottom. Fig. 23 shows the
closing of a large gap from below (®rst relaxes s4, then s3, etc.). Unlike bubbles rising in
general positions, the denser parts of the in-line arrangement, the chain, move faster. The
dense part below the gap collects the diluted bubbles along the way and tends to close the
gap. The fast denser part above the gap tends to open it even more. The result depends on

Fig. 22. Fixed-end chain. N � 10: Propagation of localised disturbances. Bubble chain as a transmission line. Local
gap s5 � 10 propagates through chain with uniform spacing s0 � 5: Upchain amplitude (spacing 4, 3, 2, 1) of the

travelling disturbance is larger than the downchain amplitude (spacing 6, 7, 8, 9) �Re � 100).

Fig. 23. Fixed-end chain. N � 5: Propagation of large-scale disturbances Ð bubble chain as the prekursor of

voidage waves in real one-dimensional bubbly ¯ows. A diluted ®ve-particle window (large spacing s � 10� evolves in
uniform chain with large particle concentration (low spacing s � 5). The window closes from below (spacing 4, 3, 2,
1) �Re � 100).
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the size of the disturbance. For large concentration di�erence s 0 ÿ s0, the chain breaks into
two parts separated by a blank region Ð the shock wave. In reality, the two bubbles
demarcating the gap (being ®xed in this model) will be repelled form the dense regions to
the sparse ones by hydrodynamic di�usion making the transition gradual.

3.2.2. Vertical instability
Linear stability analysis applies only to `small' disturbances of uniform spacing. This

uniformity can be broken by either a large enough disturbance in the stable region or a small
suitable disturbance in the unstable region. The chain then becomes fragmented (like the free-
end chain) or the bubbles enclosed within the boundaries (unlike the free-end chain) undergo
complicated behaviour.

Dissipative chaos. Interactions within the chain become complex at low Re where viscous e�ects
are strong. The amplitude of travelling disturbances is higher, the relaxation is slower, and the
part of the chain a�ected is larger. The chain dynamics changes from quick and damped
relaxation, through damped and persistent oscillations, to highly irregular oscillations,
commonly recognised as chaos. Fig. 24 demonstrates the gradual destabilisation of the uniform
equilibrium. At low Re, the bubbles cannot stay in equidistant positions; they must move
constantly so that they oscillate. The collective oscillations acquire irregular character, since
many frequencies are mixed up. There are several signs of the chaotic signal (Schuster, 1995):
the autocorrelation function decays rapidly, the power spectrum is continuous with broad noise
located mostly at low frequencies, Kolmogorov entropy is a ®nite and positive number, and
the fractal dimension of the attractor can be a non-integer number. The autocorrelation
function and the spectrum of the signal (Fig. 24(f)) are shown in Fig. 25 with values of K11:7
(bit/s) and D12:6 (30,000 data points sampled by 200 Hz).

3.2.3. Chain velocity
The remarkable feature of the in-line arrangement of particles is the collective drag

reduction. The lower the spacing (higher particle concentration), the higher the drag reduction
and the chain velocity, see Fig. 26.

3.2.4. Non-local interaction
Like the free-end chain, the non-local interactions a�ect only the ®rst several dozen bubbles

until the limit drag C �� is reached. Unlike the free-end chain, it does not make real sense to
study these ®rst bubbles. In experiments, where the ®xed-end chain means a continuous chain
passing through a liquid layer, they escape at the surface. In the theoretical model, where the
®xed-end chain represents a window in a longer chain, these bubbles are not the ®rst ones.
Distant interactions generate additional chain drag reduction. Fig. 26 shows the increase of
chain velocity with increasing intensity of the distant coupling (calculated from Eq. (2) with
non-local drag coe�cients). The measurement of the chain velocity versus bubble spacing
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enables the experimental determination of the strength k of the distant coupling within the
chain.

3.2.5. Low/high Reynolds number limit
The presence of boundaries causes less trivial limit behaviour compared to the free-end

chain. The pivot velocity is determined by spacing s0 and is generally not the least in the chain.
In low Reynolds number limit, only the attractive viscous force controls the chain behaviour.

Fig. 24. Fixed-end chain. N � 7: Chaotic behaviour of bubbles in chain. Destabilization of the equilibrium uniform
spacing by decreasing Reynolds number (a±f). Initial spacing si � �5, 5, 5, 8, 5, 5� and velocities vi � 0: Boundary
spacing s0 � 5:
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In a chain with uniform initial spacing si, pairing-o� starts from the ®rst bubble for si < s0, the
®rst bubble escapes and the pairing-o� starts from the second bubble for si > s0, and the chain
occurs in an unstable equilibrium for si � s0, which breaks into non-uniform spacing after a
small perturbation. A chain with non-uniform spacing basically follows the free-end chain
scenario.

Fig. 25. Fixed-end chain. N � 7: Chaotic signal. (a) Autocorrelation function decays rapidly. (b) Broad-band noise
appears in the power spectrum. (100 s of the signal from Fig. 24(f) sampled by 100 Hz) �Re � 50).

Fig. 26. Fixed-end chain. N � 1: Chain rise velocity. E�ect of (i) bubble spacing and (ii) distant interactions.
Nearest-neighbour approximation: vYP is the lower bound on the chain velocity (bottom full line). Non-local
interactions (YP model): chain velocity v �� increases with increasing distant coupling k (dotted lines). Non-local

interactions (KM model): v � is the upper bound on the chain velocity (top full line). (Corresponding drag
coe�cients CYP, C

��, and C � are shown in Fig. 6) �Re � 100).
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In high Reynolds number limit, only the repulsive inviscid force controls the chain behaviour.
Uniform spacing here represents an unstable (more precisely, neutrally stable with zero
eigenvalues) equilibrium of rest. The potential energy introduced into the system by deforming
the equilibrium elastic `hydrodynamic spring' converts into the kinetic energy of the particle
motion. The energy ¯ows through all possible oscillatory modes and re¯ects from boundaries
thus remaining in the system: conservative chaos. Possible inertial distant e�ects are expected
to a�ect the ®ne structure of the chaos.

4. Comparison with experiment

The key phenomena predicted by the model are compared with results on hydrodynamic
interactions of particles in a linear array previously published in the literature. The comparison
is mainly qualitative, because there are almost no experimental data available on dynamic
behaviour of individual particles in a chain.

4.1. Free-end chain

1. Two bubbles: The model agrees well (even quantitatively) with the results obtained by the
direct solution of the Navier±Stokes equation by YP, regarding both the steady solutions
and the transient dynamics. This provides the validation of the model for the case of two
bubbles.

2. More bubbles: The model predicts re-pairing as the typical phenomenon in a chain with
three or more bubbles. Re-pairing was observed in a low Re chain of three particles, both in
experiments (Happel and Pfe�er, 1960; Leichtberg et al., 1976a) and numerical simulations
(Leichtberg et al., 1976a). The model predicts pairing-o� as the typical phenomenon in a
chain with four or more bubbles. Pairing-o� was predicted theoretically (Morrison, 1973;
Harper, 1983; Lerner and Harper, 1991) and numerically (Leichtberg et al., 1976a) and was
observed in experiments (Leichtberg et al., 1976a, KM). The model predicts the
fragmentation of the free-end chain, complex interactions between fragments, and the
resulting long-time quasi-steady fragmented structure of the chain. This scenario was
observed in experiments and simulations (Leichtberg et al., 1976a). The model also predicts
possible persistent oscillations in a system of four bubbles in a vertical line. Oscillations of
three (Ca¯isch et al., 1988) and four (Durlofsky et al., 1987) freely sedimenting particles
starting from corners of a triangle and horizontal square were predicted. The model predicts
the physical contact of bubbles in pairs (and longer clusters) in low Re limit, which leads to
coalescence in real coalescent systems. Coalescence in bubble pairs was observed in
experiments (KM).

4.2. Fixed-end chain

The model predicts the existence of uniform equilibrium spacing as the typical feature of the
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®xed-end chain. Uniform steady spacing was observed in numerous experiments with chains of
bubbles and drops (see Section 1). The model predicts chain drag reduction with decreasing
bubble spacing. The chain drag reduction was observed in many experiments (Poutanen and
Johnson, 1959; Crabtree and Bridgwater, 1969; Marks, 1973; Omran and Foster, 1977; Martin
and Chandler, 1982; Li et al., 1997b, Li et al., 1998). The model predicts the existence of
travelling concentration disturbances along the chain. Concentration waves in real one-
dimensional bubbly ¯ows were predicted theoretically and observed in numerous experiments
(e.g. Lammers and Biesheuvel, 1996). The model predicts the complicated chaotic behaviour of
bubbles at low Re. The chaotic dynamics was observed in experiments (Nguyen et al., 1996, Li
et al., 1997a). Generally, complicated dynamics of mechanical one-dimensional arrays is well
known and has been studied since Fermi±Pasta±Ulam times (e.g. Jackson, 1990).
All these predictions were obtained in the nearest-neighbour approximation. It seems that

the non-local interactions may not always be strong. The intensity of these interactions
expressed by k can be determined experimentally as suggested in Section 3.
When pursuing the analogy between the behaviour of di�erent two-phase systems one

should be aware of the following. The net particle acceleration given by Eq. (12) is: (applied
forces/particle mass) 0rfluid=rparticle: This ratio is 0103 for gas bubbles in liquids, 0100 for
drops and solids in liquids and also for bubbles endowed with added mass, and 010ÿ3 for
drops and solids in gases. Weaker ¯uid inertial e�ects are, therefore, expected for drops in gas
compared to bubbles. Indeed, feeling no inertial repulsion, all trailing drops unscrupulously
coalesced into the leading drop in drop chains in air at Re about 80 (Nguyen and Dunn-
Rankin, 1992). Note that for a given system, the viscous-to-inviscid ratio of the force
coe�cients is Cd=Cp0Reÿ1 �O�Reÿ3=2�: Another issue is the di�erence due to the slip/non-slip
boundary conditions. For example, two side-by-side bubbles attract each other unlimitedly
(Kok, 1993a, 1993b), while two drops or solids stop at an equilibrium distance (Kim et al.,
1993).

5. Conclusions

The proposed model for dynamic behaviour of bubbles rising in the one-dimensional array
presents considerable simpli®cation of this hydrodynamic problem. The very special
arrangement of the particles enabled us to build up the model as a composition of several
ingredients: viscous drag, added mass, inertial force, buoyancy; which are believed to play the
crucial role in the particle interactions. In this approximation, the particle behaviour is
described simply by the Newton force law, the set of ODEs. The hydrodynamic interactions
thus decomposed are transparent and it is easy to ®nd where the given phenomenon comes
from. For instance, the analysis of the non-local coupling between distant particles would be
di�cult to obtain otherwise. This approach is justi®ed partly by the reasonings underlaying the
modelling concept and partly by the qualitative agreement of the model predictions with
experimental results. The price for the simplicity is so far unknown and the model must be
tested by ®ne experimental measurements and numerical solution of the fundamental equations
of motion.
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Appendix A

Two formulas were suggested to ®t the dependence of drag factors F1 and F2 on bubble
spacing s calculated by YP for three values of Re, see Table 2. To keep the expressions simple,
the dependence on Re was omitted and the formulas give average values. Factor F2 was
approximated by a hyperbola

F2 � k1 � k2

�sÿ k3�k4
, �A1�

with the following values of parameters: k1 � 2:2, k2 � 2:520:2, k3 � 2, and k4 � 0:620:05:
The correlation coe�cient of the log±log plot was 0.906. The formula for F1 is less obvious.
Since the graph resembles a trajectory of heavily damped pendulum, the following expression
was suggested:

Table 2
Bubble drag factors a

Spacing, s

Factor F1-leading bubble Factor F2-trailing bubble

Re Re

50 100 200 50 100 200

2.6 1.95 1.78 0.20 4.20 5.38 8.25

3.0 2.10 2.10 2.08 3.95 4.90 5.70
3.5 2.23 2.46 2.75 3.60 4.20 4.48
4.0 2.25 2.51 2.78 3.40 3.88 4.05

5.0 2.20 2.43 2.55 3.20 3.60 3.78
7.0 2.15 2.25 2.25 2.95 3.35 3.55
10.0 2.10 2.10 2.13 2.78 3.15 3.30
15.0 2.08 2.05 2.05 2.60 2.95 3.05

20.0 2.08 2.05 2.03 2.49 2.80 2.85
25.0 2.05 2.40 2.70
30.0 2.05 2.35 2.60

a The original numerical values of the leading F1 and trailing F2 drag factors of the bubble pair calculated by YP
(taken from Fig. 3 in YP).
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F1 � k1 � k2
�
exp� ÿ k3�sÿ k4�� ÿ k5 exp� ÿ k6�sÿ k7��

�
, �A2�

with the following values of parameters: k1 � 2:2, k2 � 6, k3 � 1, k4 � 1:2, k5 � 5, k6 � 2, and
k7 � 1:2: No linearisation was applied here and the best ®t was made on the grounds of both
the low sum of squares of deviations and the visually acceptable passage of the graph through
the scatter of data. In both cases, a better ®t can be obtained for individual data sets with a
particular value of Re.
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